GRASP - 通用职责分配软件模式

GRASP 是通用职责分配软件模式(General Responsibility Assignment Software Patterns)的简称,是面向对象设计和职责分配中的九个基本原则,最早是在克雷·拉蒙1997年的Applying UML and Patterns书中提到。

GRASP中提到的模式和原则包括有控制器(controller)、创建者(creator)、中介(indirection)、信息专家(information expert)、低耦合性(low coupling)、高内聚性(high cohesion)、多态(polymorphism)、保护变化(protected variations)和纯虚构(pure Fabrication)。这些模式都是针对软件开发上的一些问题进行解决。发明这些技巧不是为了要创造新的工作方式,而是为在面向对象设计上,旧的,经过测试的程序设计方式创建文档并且标准化。

排序算法

在计算机科学与数学中,一个排序算法(英语:Sorting algorithm)是一种能将一串资料依照特定排序方式进行排列的一种算法。最常用到的排序方式是数值顺序以及字典顺序。有效的排序算法在一些算法(例如搜索算法与合并算法)中是重要的,如此这些算法才能得到正确解答。排序算法也用在处理文字资料以及产生人类可读的输出结果。

A* 搜索算法

A* 搜索算法(A* search algorithm)是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或网络游戏的BOT的移动计算上。

该算法综合了最良优先搜索和Dijkstra算法的优点:在进行启发式搜索提高算法效率的同时,可以保证找到一条最优路径(需要评估函数满足单调性)。

Floyd Warshall 算法

Floyd-Warshall算法(英语:Floyd-Warshall algorithm),中文亦称弗洛伊德算法或佛洛依德算法,是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包。

动态规划 Dynamic Programming

动态规划(英语:Dynamic programming,简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题和最优子结构(英语:Optimal substructure)性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再根据子问题的解以得出原问题的解。

通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。

广度优先搜索 BFS

广度优先搜索算法(英语:Breadth-First Search,缩写为BFS),又译作宽度优先搜索,或横向优先搜索,是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。广度优先搜索的实现一般采用open-closed表。

迪杰斯特拉算法 Dijkstra

戴克斯特拉算法(英语:Dijkstra’s algorithm),又译迪杰斯特拉算法,亦可不音译而称为Dijkstra算法,是由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年发现的算法,并于3年后在期刊上发表。戴克斯特拉算法使用类似广度优先搜索的方法解决赋权图的单源最短路径问题。

该算法存在很多变体:戴克斯特拉的原始版本仅适用于找到两个顶点之间的最短路径,后来更常见的变体固定了一个顶点作为源结点然后找到该顶点到图中所有其它结点的最短路径,产生一个最短路径树。

深度优先搜索算法 DFS

深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。这个算法会尽可能深地搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。这种算法不会根据图的结构等信息调整执行策略[来源请求]。

深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如无权最长路径问题等等。