目录

贪心算法

贪心的本质是选择每一阶段的局部最优,从而达到全局最优。

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择,就能得到问题的答案。贪心算法需要充分挖掘题目中条件,没有固定的模式,解决有贪心算法需要一定的直觉和经验。

贪心算法不是对所有问题都能得到整体最优解。能使用贪心算法解决的问题具有「贪心选择性质」。「贪心选择性质」严格意义上需要数学证明。能使用贪心算法解决的问题必须具备「无后效性」,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

一般数学证明有如下两种方法:

  • 数学归纳法
  • 反证法

11. 盛最多水的容器

11. 盛最多水的容器

双指针

  • 相同情况两边距离越远越好
  • 区域受限于较短边
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
public class Solution {
    public int maxArea(int[] height) {
        int l = 0, r = height.length - 1;
        int ans = 0;
        while (l < r) {
            int area = Math.min(height[l], height[r]) * (r - l);
            ans = Math.max(ans, area);
            if (height[l] <= height[r]) {
                ++l;
            }
            else {
                --r;
            }
        }
        return ans;
    }
}

55. 跳跃游戏

55. 跳跃游戏

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
public class Solution {
    public boolean canJump(int[] nums) {
        int n = nums.length;
        int rightmost = 0;
        for (int i = 0; i < n; ++i) {
            if (i <= rightmost) {
                rightmost = Math.max(rightmost, i + nums[i]);
                if (rightmost >= n - 1) {
                    return true;
                }
            }
        }
        return false;
    }
}

122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution {
    public int maxProfit(int[] prices) {
        int ans = 0;
        int n = prices.length;
        for (int i = 1; i < n; ++i) {
            ans += Math.max(0, prices[i] - prices[i - 1]);
        }
        return ans;
    }
}