目录

Redis 开发规范

键值设计

key 名设计

可读性和可管理性

以业务名 (或数据库名) 为前缀(防止 key 冲突),用冒号分隔,比如业务名: 表名: id

ugc:video:1

简洁性

保证语义的前提下,控制 key 的长度,当 key 较多时,内存占用也不容忽视,例如:

user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}

不要包含特殊字符

反例:包含空格、换行、单双引号以及其他转义字符

value 设计

拒绝 bigkey

防止网卡流量、慢查询,string 类型控制在 10KB 以内,hash、list、set、zset 元素个数不要超过 5000。 反例:一个包含 200 万个元素的 list。 非字符串的 bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除,同时要注意防止 bigkey 过期时间自动删除问题 (例如一个 200 万的 zset 设置 1 小时过期,会触发 del 操作,造成阻塞,而且该操作不会不出现在慢查询中 (latency 可查)),查找方法和删除方法

选择适合的数据类型

例如:实体类型 (要合理控制和使用数据结构内存编码优化配置, 例如 ziplist,但也要注意节省内存和性能之间的平衡)

反例:

1
2
3
set user:1:name tom
set user:1:age 19
set user:1:favor football

正例:

1
hmset user:1 name tom age 19 favor football

控制 key 的生命周期

redis 不是垃圾桶,建议使用 expire 设置过期时间 (条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注 idletime。

命令使用

1、O(N) 命令关注 N 的数量

例如 hgetall、lrange、smembers、zrange、sinter 等并非不能使用,但是需要明确 N 的值。有遍历的需求可以使用 hscan、sscan、zscan 代替。

2、禁用命令

禁止线上使用 keys、flushall、flushdb 等,通过 redis 的 rename 机制禁掉命令,或者使用 scan 的方式渐进式处理。

3、合理使用 select

redis 的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

4、使用批量操作提高效率

原生命令:例如 mget、mset。

非原生命令:可以使用 pipeline 提高效率。

但要注意控制一次批量操作的元素个数 (例如 500 以内,实际也和元素字节数有关)。

注意两者不同:

原生是原子操作,pipeline 是非原子操作。 pipeline 可以打包不同的命令,原生做不到 pipeline 需要客户端和服务端同时支持。

5、不建议过多使用 Redis 事务功能

Redis 的事务功能较弱 (不支持回滚),而且集群版本(自研和官方) 要求一次事务操作的 key 必须在一个 slot 上(可以使用 hashtag 功能解决)

6、Redis 集群版本在使用 Lua 上有特殊要求

  • 所有 key 都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的 redis 命令,key 的位置,必须是 KEYS array, 否则直接返回 error,"-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS arrayrn"
  • 所有 key,必须在 1 个 slot 上,否则直接返回 error, “-ERR eval/evalsha command keys must in same slotrn”

7、monitor 命令

必要情况下使用 monitor 命令时,要注意不要长时间使用。

客户端使用

1、避免多个应用使用一个 Redis 实例

不相干的业务拆分,公共数据做服务化。

2、使用连接池

可以有效控制连接,同时提高效率,标准使用方式:

执行命令如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
Jedis jedis = null;
try {
    jedis = jedisPool.getResource();
    //具体的命令
    jedis.executeCommand()
} catch (Exception e) {
    logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
    //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
    if (jedis != null)
        jedis.close();
}

3、熔断功能

高并发下建议客户端添加熔断功能 (例如 netflix hystrix)

4、合理的加密

设置合理的密码,如有必要可以使用 SSL 加密访问(阿里云 Redis 支持)

5、淘汰策略

根据自身业务类型,选好 maxmemory-policy(最大内存淘汰策略),设置好过期时间。 默认策略是 volatile-lru,即超过最大内存后,在过期键中使用 lru 算法进行 key 的剔除,保证不过期数据不被删除,但是可能会出现 OOM 问题。

其他策略如下:

  • allkeys-lru:根据 LRU 算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。
  • allkeys-random:随机删除所有键,直到腾出足够空间为止。
  • volatile-random: 随机删除过期键,直到腾出足够空间为止。
  • volatile-ttl:根据键值对象的 ttl 属性,删除最近将要过期数据。如果没有,回退到 noeviction 策略。
  • noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息 “(error) OOM command not allowed when used memory”,此时 Redis 只响应读操作。

相关工具

1、数据同步

redis 间数据同步可以使用:redis-port

2、big key 搜索

redis 大 key 搜索工具

3、热点 key 寻找

内部实现使用 monitor,所以建议短时间使用 facebook 的 redis-faina 阿里云 Redis 已经在内核层面解决热点 key 问题

删除 bigkey

下面操作可以使用 pipeline 加速。 redis 4.0 已经支持 key 的异步删除,欢迎使用。

1、Hash 删除: hscan + hdel

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
public void delBigHash(String host, int port, String password, String bigHashKey) {
    Jedis jedis = new Jedis(host, port);
    if (password != null && !"".equals(password)) {
        jedis.auth(password);
    }
    ScanParams scanParams = new ScanParams().count(100);
    String cursor = "0";
    do {
        ScanResult<Entry<String, String>> scanResult = jedis.hscan(bigHashKey, cursor, scanParams);
        List<Entry<String, String>> entryList = scanResult.getResult();
        if (entryList != null && !entryList.isEmpty()) {
            for (Entry<String, String> entry : entryList) {
                jedis.hdel(bigHashKey, entry.getKey());
            }
        }
        cursor = scanResult.getStringCursor();
    } while (!"0".equals(cursor));
    //删除bigkey
    jedis.del(bigHashKey);
}

2、List 删除: ltrim

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
public void delBigList(String host, int port, String password, String bigListKey) {
    Jedis jedis = new Jedis(host, port);
    if (password != null && !"".equals(password)) {
        jedis.auth(password);
    }
    long llen = jedis.llen(bigListKey);
    int counter = 0;
    int left = 100;
    while (counter < llen) {
        //每次从左侧截掉100个
        jedis.ltrim(bigListKey, left, llen);
        counter += left;
    }
    //最终删除key
    jedis.del(bigListKey);
}

3、Set 删除: sscan + srem

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
public void delBigSet(String host, int port, String password, String bigSetKey) {
    Jedis jedis = new Jedis(host, port);
    if (password != null && !"".equals(password)) {
        jedis.auth(password);
    }
    ScanParams scanParams = new ScanParams().count(100);
    String cursor = "0";
    do {
        ScanResult<String> scanResult = jedis.sscan(bigSetKey, cursor, scanParams);
        List<String> memberList = scanResult.getResult();
        if (memberList != null && !memberList.isEmpty()) {
            for (String member : memberList) {
                jedis.srem(bigSetKey, member);
            }
        }
        cursor = scanResult.getStringCursor();
    } while (!"0".equals(cursor));
    //删除bigkey
    jedis.del(bigSetKey);
}

4、SortedSet 删除: zscan + zrem

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
public void delBigZset(String host, int port, String password, String bigZsetKey) {
    Jedis jedis = new Jedis(host, port);
    if (password != null && !"".equals(password)) {
        jedis.auth(password);
    }
    ScanParams scanParams = new ScanParams().count(100);
    String cursor = "0";
    do {
        ScanResult<Tuple> scanResult = jedis.zscan(bigZsetKey, cursor, scanParams);
        List<Tuple> tupleList = scanResult.getResult();
        if (tupleList != null && !tupleList.isEmpty()) {
            for (Tuple tuple : tupleList) {
                jedis.zrem(bigZsetKey, tuple.getElement());
            }
        }
        cursor = scanResult.getStringCursor();
    } while (!"0".equals(cursor));
    //删除bigkey
    jedis.del(bigZsetKey);
}

大Key和热Key的定义

大Key

通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB。
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个。
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB。

热Key

通常以其接收到的Key被请求频率来判定,例如:

  • QPS集中在特定的Key:Redis实例的总QPS(每秒查询率)为10,000,而其中一个Key的每秒访问量达到了7,000。
  • 带宽使用率集中在特定的Key:对一个拥有上千个成员且总大小为1 MB的HASH Key每秒发送大量的HGETALL操作请求。
  • CPU使用时间占比集中在特定的Key:对一个拥有数万个成员的Key(ZSET类型)每秒发送大量的ZRANGE操作请求。

大Key和热Key引发的问题

大Key

  • 客户端执行命令的时长变慢。
  • Redis内存达到maxmemory参数定义的上限引发操作阻塞或重要的Key被逐出,甚至引发内存溢出(Out Of Memory)。
  • 集群架构下,某个数据分片的内存使用率远超其他数据分片,无法使数据分片的内存资源达到均衡。
  • 对大Key执行读请求,会使Redis实例的带宽使用率被占满,导致自身服务变慢,同时易波及相关的服务。
  • 对大Key执行删除操作,易造成主库较长时间的阻塞,进而可能引发同步中断或主从切换。

热Key

  • 占用大量的CPU资源,影响其他请求并导致整体性能降低。
  • 集群架构下,产生访问倾斜,即某个数据分片被大量访问,而其他数据分片处于空闲状态,可能引起该数据分片的连接数被耗尽,新的连接建立请求被拒绝等问题。
  • 在抢购或秒杀场景下,可能因商品对应库存Key的请求量过大,超出Redis处理能力造成超卖。
  • 热Key的请求压力数量超出Redis的承受能力易造成缓存击穿,即大量请求将被直接指向后端的存储层,导致存储访问量激增甚至宕机,从而影响其他业务。