目录

Kube-proxy

Kube-proxy 是 kubernetes 工作节点上的一个网络代理组件,运行在每个节点上。

Kube-proxy维护节点上的网络规则,实现了Kubernetes Service 概念的一部分 。它的作用是使发往 Service 的流量(通过ClusterIP和端口)负载均衡到正确的后端Pod。

可以认为Kubernetes的Service就是一个四层负载均衡,Kubernetes对应的还有七层负载均衡Ingress

kube-proxy 和 service

kube-proxy是Kubernetes的核心组件,部署在每个Node节点上,它是实现Kubernetes Service的通信与负载均衡机制的重要组件; kube-proxy负责为Pod创建代理服务,从apiserver获取所有server信息,并根据server信息创建代理服务,实现server到Pod的请求路由和转发,从而实现K8s层级的虚拟转发网络。

在k8s中,提供相同服务的一组pod可以抽象成一个service,通过service提供的统一入口对外提供服务,每个service都有一个虚拟IP地址(VIP)和端口号供客户端访问。kube-proxy存在于各个node节点上,主要用于Service功能的实现,具体来说,就是实现集群内的客户端pod访问service,或者是集群外的主机通过NodePort等方式访问service。在当前版本的k8s中,kube-proxy默认使用的是iptables模式,通过各个node节点上的iptables规则来实现service的负载均衡,但是随着service数量的增大,iptables模式由于线性查找匹配、全量更新等特点,其性能会显著下降。从k8s的1.8版本开始,kube-proxy引入了IPVS模式,IPVS模式与iptables同样基于Netfilter,但是采用的hash表,因此当service数量达到一定规模时,hash查表的速度优势就会显现出来,从而提高service的服务性能。

kube-proxy负责为Service提供cluster内部的服务发现和负载均衡,它运行在每个Node计算节点上,负责Pod网络代理, 它会定时从etcd服务获取到service信息来做相应的策略,维护网络规则和四层负载均衡工作。在K8s集群中微服务的负载均衡是由Kube-proxy实现的,它是K8s集群内部的负载均衡器,也是一个分布式代理服务器,在K8s的每个节点上都有一个,这一设计体现了它的伸缩性优势,需要访问服务的节点越多,提供负载均衡能力的Kube-proxy就越多,高可用节点也随之增多。

service是一组pod的服务抽象,相当于一组pod的LB,负责将请求分发给对应的pod。service会为这个LB提供一个IP,一般称为cluster IP。kube-proxy的作用主要是负责service的实现,具体来说,就是实现了内部从pod到service和外部的从node port向service的访问。

简单来说:

  • kube-proxy其实就是管理service的访问入口,包括集群内Pod到Service的访问和集群外访问service。
  • kube-proxy管理sevice的Endpoints,该service对外暴露一个Virtual IP,也成为Cluster IP, 集群内通过访问这个Cluster IP:Port就能访问到集群内对应的serivce下的Pod。
  • service是通过Selector选择的一组Pods的服务抽象,其实就是一个微服务,提供了服务的LB和反向代理的能力,而kube-proxy的主要作用就是负责service的实现。
  • service另外一个重要作用是,一个服务后端的Pods可能会随着生存灭亡而发生IP的改变,service的出现,给服务提供了一个固定的IP,而无视后端Endpoint的变化。

虚拟 IP 和 Service 代理

在 Kubernetes 集群中,每个 Node 运行一个 kube-proxy 进程。 kube-proxy 负责为 Service 实现了一种 VIP(虚拟 IP)的形式,而不是 ExternalName 的形式。

userspace 代理模式

这种模式,kube-proxy 会监视 Kubernetes 控制平面对 Service 对象和 Endpoints 对象的添加和移除操作。 对每个 Service,它会在本地 Node 上打开一个端口(随机选择)。 任何连接到“代理端口”的请求,都会被代理到 Service 的后端 Pods 中的某个上面(如 Endpoints 所报告的一样)。 使用哪个后端 Pod,是 kube-proxy 基于 SessionAffinity 来确定的。

最后,它配置 iptables 规则,捕获到达该 Service 的 clusterIP(是虚拟 IP) 和 Port 的请求,并重定向到代理端口,代理端口再代理请求到后端Pod。

默认情况下,用户空间模式下的 kube-proxy 通过轮转算法选择后端。

/images/cloud-native/k8s-service/services-userspace-overview.svg

iptables 代理模式

这种模式,kube-proxy 会监视 Kubernetes 控制节点对 Service 对象和 Endpoints 对象的添加和移除。 对每个 Service,它会配置 iptables 规则,从而捕获到达该 Service 的 clusterIP 和端口的请求,进而将请求重定向到 Service 的一组后端中的某个 Pod 上面。 对于每个 Endpoints 对象,它也会配置 iptables 规则,这个规则会选择一个后端组合。

默认的策略是,kube-proxy 在 iptables 模式下随机选择一个后端。

使用 iptables 处理流量具有较低的系统开销,因为流量由 Linux netfilter 处理, 而无需在用户空间和内核空间之间切换。 这种方法也可能更可靠。

如果 kube-proxy 在 iptables 模式下运行,并且所选的第一个 Pod 没有响应, 则连接失败。 这与用户空间模式不同:在这种情况下,kube-proxy 将检测到与第一个 Pod 的连接已失败, 并会自动使用其他后端 Pod 重试。

你可以使用 Pod 就绪探测器 验证后端 Pod 可以正常工作,以便 iptables 模式下的 kube-proxy 仅看到测试正常的后端。 这样做意味着你避免将流量通过 kube-proxy 发送到已知已失败的 Pod。

iptables存在的问题

  • iptables 规则复杂零乱,难以排查问题
  • iptables规则多了之后性能下降,这是因为iptables规则是基于链表实现,查找复杂度为O(n),当规模非常大时,查找和处理的开销就特别大。据官方说法,当节点到达5000个时,假设有2000个NodePort Service,每个Service有10个Pod,那么在每个Node节点中至少有20000条规则,内核根本支撑不住,iptables将成为最主要的性能瓶颈。
  • iptables主要是专门用来做主机防火墙的,而不是专长做负载均衡的。虽然通过iptables的statistic模块以及DNAT能够实现最简单的只支持概率轮询的负载均衡,但是往往我们还需要更多更灵活的算法,比如基于最少连接算法、源地址HASH算法等。而同样基于netfilter的ipvs却是专门做负载均衡的,配置简单,基于散列查找O(1)复杂度性能好,支持数十种调度算法。

/images/cloud-native/k8s-service/services-iptables-overview.svg

IPVS 代理模式

特性状态: Kubernetes v1.11 [stable]

在 ipvs 模式下,kube-proxy 监视 Kubernetes 服务和端点,调用 netlink 接口相应地创建 IPVS 规则, 并定期将 IPVS 规则与 Kubernetes 服务和端点同步。 该控制循环可确保IPVS 状态与所需状态匹配。访问服务时,IPVS 将流量定向到后端Pod之一。

IPVS代理模式基于类似于 iptables 模式的 netfilter 挂钩函数, 但是使用哈希表作为基础数据结构,并且在内核空间中工作。 这意味着,与 iptables 模式下的 kube-proxy 相比,IPVS 模式下的 kube-proxy 重定向通信的延迟要短,并且在同步代理规则时具有更好的性能。 与其他代理模式相比,IPVS 模式还支持更高的网络流量吞吐量。

IPVS 提供了更多选项来平衡后端 Pod 的流量。 这些是:

  • rr:轮替(Round-Robin)
  • lc:最少链接(Least Connection),即打开链接数量最少者优先
  • dh:目标地址哈希(Destination Hashing)
  • sh:源地址哈希(Source Hashing)
  • sed:最短预期延迟(Shortest Expected Delay)
  • nq:从不排队(Never Queue)

/images/cloud-native/k8s-service/services-ipvs-overview.svg

在这些代理模型中,绑定到服务 IP 的流量: 在客户端不了解 Kubernetes 或服务或 Pod 的任何信息的情况下,将 Port 代理到适当的后端。

如果要确保每次都将来自特定客户端的连接传递到同一 Pod, 则可以通过将 service.spec.sessionAffinity 设置为 “ClientIP” (默认值是 “None”),来基于客户端的 IP 地址选择会话关联。 你还可以通过适当设置 service.spec.sessionAffinityConfig.clientIP.timeoutSeconds 来设置最大会话停留时间。 (默认值为 10800 秒,即 3 小时)。

服务发现

Kubernetes 支持两种基本的服务发现模式 —— 环境变量和 DNS。

环境变量

当 Pod 运行在 Node 上,kubelet 会为每个活跃的 Service 添加一组环境变量。 kubelet 为 Pod 添加环境变量 {SVCNAME}_SERVICE_HOST 和 {SVCNAME}_SERVICE_PORT。 这里 Service 的名称需大写,横线被转换成下划线。

DNS

你可以(几乎总是应该)使用附加组件 为 Kubernetes 集群设置 DNS 服务。

支持集群的 DNS 服务器(例如 CoreDNS)监视 Kubernetes API 中的新服务,并为每个服务创建一组 DNS 记录。 如果在整个集群中都启用了 DNS,则所有 Pod 都应该能够通过其 DNS 名称自动解析服务。

Kubernetes DNS 服务器是唯一的一种能够访问 ExternalName 类型的 Service 的方式。

发布服务(服务类型)

对一些应用的某些部分(如前端),可能希望将其暴露给 Kubernetes 集群外部 的 IP 地址。

Kubernetes ServiceTypes 允许指定你所需要的 Service 类型,默认是 ClusterIP。

Type 的取值以及行为如下:

  • ClusterIP:通过集群的内部 IP 暴露服务,选择该值时服务只能够在集群内部访问。 这也是默认的 ServiceType。
  • NodePort:通过每个节点上的 IP 和静态端口(NodePort)暴露服务。 NodePort 服务会路由到自动创建的 ClusterIP 服务。 通过请求 <节点 IP>:<节点端口>,你可以从集群的外部访问一个 NodePort 服务。
  • LoadBalancer:使用云提供商的负载均衡器向外部暴露服务。 外部负载均衡器可以将流量路由到自动创建的 NodePort 服务和 ClusterIP 服务上。
  • ExternalName:通过返回 CNAME 和对应值,可以将服务映射到 externalName 字段的内容(例如,foo.bar.example.com)。 无需创建任何类型代理。

说明: 你需要使用 kube-dns 1.7 及以上版本或者 CoreDNS 0.0.8 及以上版本才能使用 ExternalName 类型。

你也可以使用 Ingress 来暴露自己的服务。 Ingress 不是一种服务类型,但它充当集群的入口点。 它可以将路由规则整合到一个资源中,因为它可以在同一IP地址下公开多个服务。