目录

Kubernetes

Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。

What is Kubernetes?

/images/k8s/container_evolution.svg

Kubernetes 为您提供:

  • 服务发现和负载均衡 Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果到容器的流量很大,Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。

  • 存储编排 Kubernetes 允许您自动挂载您选择的存储系统,例如本地存储、公共云提供商等。

  • 自动部署和回滚 您可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态更改为所需状态。例如,您可以自动化 Kubernetes 来为您的部署创建新容器,删除现有容器并将它们的所有资源用于新容器。

  • 自动二进制打包 Kubernetes 允许您指定每个容器所需 CPU 和内存(RAM)。当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。

  • 自我修复 Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。

  • 密钥与配置管理 Kubernetes 允许您存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。您可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。

Kubernetes 组件

当你部署完 Kubernetes, 即拥有了一个完整的集群。

一个 Kubernetes 集群包含 集群由一组被称作节点的机器组成。这些节点上运行 Kubernetes 所管理的容器化应用。集群具有至少一个工作节点和至少一个主节点。

工作节点托管作为应用程序组件的 Pod 。主节点管理集群中的工作节点和 Pod 。多个主节点用于为集群提供故障转移和高可用性。

/images/k8s/components-of-kubernetes.svg

控制平面组件(Control Plane Components)

kube-apiserver

主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。

etcd

etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。

kube-scheduler

主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。

调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。

kube-controller-manager

在主节点上运行控制器的组件。

从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。

这些控制器包括:

  • 节点控制器(Node Controller): 负责在节点出现故障时进行通知和响应。
  • 任务控制器(Job controller):监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成
  • 端点控制器(Endpoints Controller): 填充端点(Endpoints)对象(即加入 Service 与 Pod)。
  • 服务帐户和令牌控制器(Service Account & Token Controllers): 为新的命名空间创建默认帐户和 API 访问令牌.

云控制器管理器 (cloud-controller-manager)

cloud-controller-manager 运行与基础云提供商交互的控制器。cloud-controller-manager 二进制文件是 Kubernetes 1.6 版本中引入的 alpha 功能。

cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider 参数设置为 external 来禁用控制器循环。

cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。

以下控制器具有云提供商依赖性:

  • 节点控制器(Node Controller): 用于检查云提供商以确定节点是否在云中停止响应后被删除
  • 路由控制器(Route Controller): 用于在底层云基础架构中设置路由
  • 服务控制器(Service Controller): 用于创建、更新和删除云提供商负载均衡器
  • 数据卷控制器(Volume Controller): 用于创建、附加和装载卷、并与云提供商进行交互以编排卷

Node 组件

节点组件在每个节点上运行,维护运行的 Pod 并提供 Kubernetes 运行环境。

kubelet

一个在集群中每个节点上运行的代理。它保证容器都运行在 Pod 中。

kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。

kube-proxy

kube-proxy 是集群中每个节点上运行的网络代理,实现 Kubernetes Service 概念的一部分。

kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。

如果操作系统提供了数据包过滤层并可用的话,kube-proxy会通过它来实现网络规则。否则,kube-proxy 仅转发流量本身。

容器运行环境(Container Runtime)

容器运行环境是负责运行容器的软件。

Kubernetes supports container runtimes such as containerd, CRI-O, and any other implementation of the Kubernetes CRI (Container Runtime Interface).

插件(Addons)

插件使用 Kubernetes 资源 (DaemonSet, Deployment等) 实现集群功能。因为这些提供集群级别的功能,所以插件的命名空间资源属于 kube-system 命名空间。

所选的插件如下所述:有关可用插件的扩展列表,请参见插件 (Addons)

DNS

尽管并非严格要求其他附加组件,但所有示例都依赖集群 DNS,因此所有 Kubernetes 集群都应具有 DNS。

除了您环境中的其他 DNS 服务器之外,集群 DNS 还是一个 DNS 服务器,它为 Kubernetes 服务提供 DNS 记录。

Cluster DNS 是一个 DNS 服务器,和您部署环境中的其他 DNS 服务器一起工作,为 Kubernetes 服务提供DNS记录。

Kubernetes 启动的容器自动将 DNS 服务器包含在 DNS 搜索中。

用户界面(Web UI - Dashboard)

Dashboard 是 Kubernetes 集群的通用基于 Web 的 UI。它使用户可以管理集群中运行的应用程序以及集群本身并进行故障排除。

容器资源监控 Container Resource Monitoring

容器资源监控将关于容器的一些常见的时间序列度量值保存到一个集中的数据库中,并提供用于浏览这些数据的界面。

集群层面日志 Cluster-level Logging

集群层面日志 机制负责将容器的日志数据保存到一个集中的日志存储中,该存储能够提供搜索和浏览接口。

A Kubernetes cluster consists of 集群由一组被称作节点的机器组成。这些节点上运行 Kubernetes 所管理的容器化应用。集群具有至少一个工作节点和至少一个主节点。

工作节点托管作为应用程序组件的 Pod 。主节点管理集群中的工作节点和 Pod 。多个主节点用于为集群提供故障转移和高可用性。

Kubernetes API

Kubernetes 的核心控制平面 是个API 服务器. API 服务器公开了一个 HTTP API,允许最终用户、集群的不同部分和外部组件相互通信。

Kubernetes API 允许您查询和操作 Kubernetes 中 API 对象的状态(例如:Pod、命名空间、ConfigMap 和事件)。

大多数操作都可以通过 kubectl命令行界面或其他命令行工具执行,例如 kubeadm,后者又使用 API。但是,您也可以使用 REST 调用直接访问 API。

如果您正在使用 Kubernetes API 编写应用程序,请考虑使用其中一个客户端库

Kubernetes 对象

理解 Kubernetes 对象

在 Kubernetes 系统中,Kubernetes 对象 是持久化的实体。Kubernetes 使用这些实体去表示整个集群的状态。特别地,它们描述了如下信息:

  • 哪些容器化应用在运行(以及在哪个 Node 上)
  • 可以被应用使用的资源
  • 关于应用运行时表现的策略,比如重启策略、升级策略,以及容错策略

Kubernetes 对象是 “目标性记录” —— 一旦创建对象,Kubernetes 系统将持续工作以确保对象存在。通过创建对象,本质上是在告知 Kubernetes 系统,所需要的集群工作负载看起来是什么样子的,这就是 Kubernetes 集群的 期望状态(Desired State)

操作 Kubernetes 对象 —— 无论是创建、修改,或者删除 —— 需要使用 Kubernetes API。比如,当使用 kubectl 命令行接口时,CLI 会执行必要的 Kubernetes API 调用,也可以在程序中使用 客户端库 直接调用 Kubernetes API。

对象规约(Spec)与状态(Status)

每个 Kubernetes 对象包含两个嵌套的对象字段,它们负责管理对象的配置:对象 spec 和 对象 statusspec 是必需的,它描述了对象的 期望状态(Desired State) —— 希望对象所具有的特征。 status 描述了对象的 实际状态(Actual State) ,它是由 Kubernetes 系统提供和更新的。在任何时刻,Kubernetes 控制面一直努力地管理着对象的实际状态以与期望状态相匹配。

例如,Kubernetes Deployment 对象能够表示运行在集群中的应用。 当创建 Deployment 时,可能需要设置 Deployment 的规约,以指定该应用需要有 3 个副本在运行。 Kubernetes 系统读取 Deployment 规约,并启动我们所期望的该应用的 3 个实例 —— 更新状态以与规约相匹配。 如果那些实例中有失败的(一种状态变更),Kubernetes 系统通过修正来响应规约和状态之间的不一致 —— 这种情况,会启动一个新的实例来替换。

关于对象 spec、status 和 metadata 的更多信息,查看 Kubernetes API 约定

展示了 Kubernetes Deployment 的必需字段和对象规约:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
  name: nginx-deployment
spec:
  selector:
    matchLabels:
      app: nginx
  replicas: 2 # tells deployment to run 2 pods matching the template
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
        ports:
        - containerPort: 80
1
kubectl apply -f https://k8s.io/examples/application/deployment.yaml --record

必需字段

在想要创建的 Kubernetes 对象对应的 .yaml 文件中,需要配置如下的字段:

  • apiVersion - 创建该对象所使用的 Kubernetes API 的版本
  • kind - 想要创建的对象的类型
  • metadata - 帮助识别对象唯一性的数据,包括一个 name 字符串、UID 和可选的 namespace

您也需要提供对象的 spec 字段。对象 spec 的精确格式对每个 Kubernetes 对象来说是不同的,包含了特定于该对象的嵌套字段。Kubernetes API 参考能够帮助我们找到任何我们想创建的对象的 spec 格式。 例如,可以从 这里 查看 Podspec 格式, 并且可以从 这里 查看 Deploymentspec 格式。

Kubernetes 对象管理

kubectl 命令行工具支持多种不同的方式来创建和管理 Kubernetes 对象。

应该只使用一种技术来管理 Kubernetes 对象。混合和匹配技术作用在同一对象上将导致未定义行为。

命令式命令

通过创建 Deployment 对象来运行 nginx 容器的实例:

1
kubectl run nginx --image nginx

使用不同的语法来达到同样的上面的效果:

1
kubectl create deployment nginx --image nginx

命令式对象配置

在命令式对象配置中,kubectl 命令指定操作(创建,替换等),可选标志和至少一个文件名。指定的文件必须包含 YAML 或 JSON 格式的对象的完整定义。

1
kubectl create -f nginx.yaml

删除两个配置文件中定义的对象:

1
kubectl delete -f nginx.yaml -f redis.yaml

通过覆盖活动配置来更新配置文件中定义的对象:

1
kubectl replace -f nginx.yaml

声明式对象配置

使用声明式对象配置时,用户对本地存储的对象配置文件进行操作,但是用户未定义要对该文件执行的操作。kubectl 会自动检测每个文件的创建、更新和删除操作。这使得配置可以在目录上工作,根据目录中配置文件对不同的对象执行不同的操作。

处理 configs 目录中的所有对象配置文件,创建并更新活动对象。可以首先使用 diff 子命令查看将要进行的更改,然后在进行应用:

1
2
kubectl diff -f configs/
kubectl apply -f configs/

递归处理目录:

1
2
kubectl diff -R -f configs/
kubectl apply -R -f configs/

对象名称和IDs

集群中的每一个对象都一个名称 来标识在同类资源中的唯一性。

每个 Kubernetes 对象也有一个UID 来标识在整个集群中的唯一性。

比如,在同一个namespace中只能命名一个名为 myapp-1234 的 Pod, 但是可以命名一个 Pod 和一个 Deployment 同为 myapp-1234.

对于非唯一的用户提供的属性,Kubernetes 提供了标签注释

命名空间

Kubernetes 支持多个虚拟集群,它们底层依赖于同一个物理集群。 这些虚拟集群被称为命名空间。

1
kubectl get namespace

Kubernetes 会创建三个初始命名空间:

  • default 没有指明使用其它命名空间的对象所使用的默认命名空间

  • kube-system Kubernetes 系统创建对象所使用的命名空间

  • kube-public 这个命名空间是自动创建的,所有用户(包括未经过身份验证的用户)都可以读取它。这个命名空间主要用于集群使用,以防某些资源在整个集群中应该是可见和可读的。这个命名空间的公共方面只是一种约定,而不是要求。

为请求设置命名空间

要为当前请求设置命名空间,请使用 --namespace 参数。

例如:

1
2
kubectl run nginx --image=nginx --namespace=<insert-namespace-name-here>
kubectl get pods --namespace=<insert-namespace-name-here>

设置命名空间首选项

您可以永久保存该上下文中所有后续 kubectl 命令使用的命名空间。

1
2
3
kubectl config set-context --current --namespace=<insert-namespace-name-here>
# Validate it
kubectl config view | grep namespace:

命名空间和 DNS

当您创建一个 Service 时,Kubernetes 会创建一个相应的 DNS 条目

该条目的形式是 ..svc.cluster.local,这意味着如果容器只使用 ``,它将被解析到本地命名空间的服务。这对于跨多个命名空间(如开发、分级和生产)使用相同的配置非常有用。如果您希望跨命名空间访问,则需要使用完全限定域名(FQDN)。

大多数 kubernetes 资源(例如 Pod、Service、副本控制器等)都位于某些命名空间中。但是命名空间资源本身并不在命名空间中。而且底层资源,例如 nodes 和持久化卷不属于任何命名空间。

查看哪些 Kubernetes 资源在命名空间中,哪些不在命名空间中:

1
2
3
4
5
# In a namespace
kubectl api-resources --namespaced=true

# Not in a namespace
kubectl api-resources --namespaced=false

标签和选择器

标签 是附加到 Kubernetes 对象(比如 Pods)上的键值对。 标签旨在用于指定对用户有意义且相关的对象的标识属性,但不直接对核心系统有语义含义。 标签可以用于组织和选择对象的子集。标签可以在创建时附加到对象,随后可以随时添加和修改。 每个对象都可以定义一组键/值标签。每个键对于给定对象必须是唯一的。

1
2
3
4
5
6
"metadata": {
  "labels": {
    "key1" : "value1",
    "key2" : "value2"
  }
}

示例标签:

  • "release" : "stable", "release" : "canary"
  • "environment" : "dev", "environment" : "qa", "environment" : "production"
  • "tier" : "frontend", "tier" : "backend", "tier" : "cache"
  • "partition" : "customerA", "partition" : "customerB"
  • "track" : "daily", "track" : "weekly"

这些只是常用标签的例子; 您可以任意制定自己的约定。请记住,对于给定对象标签的键必须是唯一的。

注解

你可以使用 Kubernetes 注解为对象附加任意的非标识的元数据。客户端程序(例如工具和库)能够获取这些元数据信息。

为对象附加元数据

您可以使用标签或注解将元数据附加到 Kubernetes 对象。 标签可以用来选择对象和查找满足某些条件的对象集合。 相反,注解不用于标识和选择对象。 注解中的元数据,可以很小,也可以很大,可以是结构化的,也可以是非结构化的,能够包含标签不允许的字符。

注解和标签一样,是键/值对:

1
2
3
4
5
6
"metadata": {
  "annotations": {
    "key1" : "value1",
    "key2" : "value2"
  }
}

https://kubernetes.io/docs/home/ https://kubernetes.io/zh/docs/concepts/overview/

Kubernetes 架构

节点

Kubernetes 通过将容器放入在节点(Node)上运行的 Pod 中来执行你的工作负载。 节点可以是一个虚拟机或者物理机器,取决于所在的集群配置。 每个节点包含运行 Pods 所需的服务; 这些节点由 控制面 负责管理。 节点上的组件包括 kubelet、 容器运行时以及 kube-proxy。

工作负载

Pods

https://kubernetes.io/zh/docs/concepts/workloads/pods/

Pod 是可以在 Kubernetes 中创建和管理的、最小的可部署的计算单元。

Pod (就像在鲸鱼荚或者豌豆荚中)是一组(一个或多个)容器(例如 Docker 容器),这些容器共享存储、网络、以及怎样运行这些容器的声明。Pod 中的内容总是并置(colocated)的并且一同调度,在共享的上下文中运行。 Pod 所建模的是特定于应用的“逻辑主机”,其中包含一个或多个应用容器,这些容器是相对紧密的耦合在一起 — 在容器出现之前,在相同的物理机或虚拟机上运行意味着在相同的逻辑主机上运行。

工作负载资源

Deployments

一个 Deployment 控制器为 PodsReplicaSets提供描述性的更新方式。

描述 Deployment 中的 desired state,并且 Deployment 控制器以受控速率更改实际状态,以达到期望状态。可以定义 Deployments 以创建新的 ReplicaSets ,或删除现有 Deployments ,并通过新的 Deployments 使用其所有资源。

ReplicaSet

ReplicaSet 是下一代的 Replication Controller。 ReplicaSetReplication Controller 的唯一区别是选择器的支持。ReplicaSet 支持新的基于集合的选择器需求,这在标签用户指南中有描述。而 Replication Controller 仅支持基于相等选择器的需求。

StatefulSets

StatefulSet 是用来管理有状态应用的工作负载 API 对象。

StatefulSet 用来管理 Deployment 和扩展一组 Pod,并且能为这些 Pod 提供序号和唯一性保证

Deployment 相同的是,StatefulSet 管理了基于相同容器定义的一组 Pod。但和 Deployment 不同的是,StatefulSet 为它们的每个 Pod 维护了一个固定的 ID。这些 Pod 是基于相同的声明来创建的,但是不能相互替换:无论怎么调度,每个 Pod 都有一个永久不变的 ID。

StatefulSet 和其他控制器使用相同的工作模式。你在 StatefulSet 对象 中定义你期望的状态,然后 StatefulSet 的 控制器 就会通过各种更新来达到那种你想要的状态。

DaemonSet

DaemonSet 确保全部(或者某些)节点上运行一个 Pod 的副本。当有节点加入集群时, 也会为他们新增一个 Pod 。当有节点从集群移除时,这些 Pod 也会被回收。删除 DaemonSet 将会删除它创建的所有 Pod。

DaemonSet 的一些典型用法:

一个简单的用法是在所有的节点上都启动一个 DaemonSet,将被作为每种类型的 daemon 使用。

一个稍微复杂的用法是单独对每种 daemon 类型使用多个 DaemonSet,但具有不同的标志, 并且对不同硬件类型具有不同的内存、CPU 要求。

Jobs

Job 创建一个或多个Pod,并确保指定数量的Pod成功终止。Pod 成功完成后,Job 将跟踪成功完成的情况。当达到指定的成功完成次数时,任务(即Job)就完成了。删除Job将清除其创建的Pods。

已完成 Job 的自动清理

TTL-after-finished 控制器 提供了一种 TTL 机制来限制已完成执行的资源对象的生命周期。 TTL 控制器目前只处理 Job。

CronJob

FEATURE STATE: Kubernetes v1.8 [beta]

Cron Job 创建基于时间调度的 Jobs

一个 CronJob 对象就像 crontab (cron table) 文件中的一行。它用 Cron 格式进行编写,并周期性地在给定的调度时间执行 Job。

ReplicationController

注意: 现在推荐使用配置 ReplicaSetDeployment 来建立副本管理机制。

ReplicationController 确保在任何时候都有特定数量的 pod 副本处于运行状态。 换句话说,ReplicationController 确保一个 pod 或一组同类的 pod 总是可用的。

服务、负载均衡和联网

每一个 Pod 都有它自己的IP地址, 这就意味着你不需要显式地在 Pod 之间创建链接, 你几乎不需要处理容器端口到主机端口之间的映射。 这将形成一个干净的、向后兼容的模型;在这个模型里,从端口分配、命名、服务发现、 负载均衡、应用配置和迁移的角度来看, Pod 可以被视作虚拟机或者物理主机。

Kubernetes 强制要求所有网络设施都满足以下基本要求(从而排除了有意隔离网络的策略):

  • 节点上的 Pod 可以不通过 NAT 和其他任何节点上的 Pod 通信
  • 节点上的代理(比如:系统守护进程、kubelet)可以和节点上的所有 Pod 通信

备注:对于支持在主机网络中运行 Pod 的平台(比如:Linux):

  • 运行在节点主机网络里的 Pod 可以不通过 NAT 和所有节点上的 Pod 通信

这个模型不仅不复杂,而且还和 Kubernetes 的实现从虚拟机向容器平滑迁移的初衷相符, 如果你的任务开始是在虚拟机中运行的,你的虚拟机有一个 IP, 可以和项目中其他虚拟机通信。这里的模型是基本相同的。

Kubernetes 的 IP 地址存在于 Pod 范围内 - 容器共享它们的网络命名空间 - 包括它们的 IP 地址和 MAC 地址。 这就意味着 Pod 内的容器都可以通过 localhost 到达对方端口。 这也意味着 Pod 内的容器需要相互协调端口的使用,但是这和虚拟机中的进程似乎没有什么不同, 这也被称为“一个 Pod 一个 IP”模型。

如何实现以上需求是所使用的特定容器运行时的细节。

也可以在 Node 本身请求端口,并用这类端口转发到你的 Pod(称之为主机端口), 但这是一个很特殊的操作。转发方式如何实现也是容器运行时的细节。 Pod 自己并不知道这些主机端口的存在。

Kubernetes 网络解决四方面的问题:

  • 一个 Pod 中的容器之间通过本地回路(loopback)通信。
  • 集群网络在不同 pod 之间提供通信。
  • Service 资源允许你 对外暴露 Pods 中运行的应用程序, 以支持来自于集群外部的访问。
  • 可以使用 Services 来发布仅供集群内部使用的服务。

存储

Volumes

容器中的文件在磁盘上是临时存放的,这给容器中运行的特殊应用程序带来一些问题。 首先,当容器崩溃时,kubelet 将重新启动容器,容器中的文件将会丢失——因为容器会以干净的状态重建。 其次,当在一个 Pod 中同时运行多个容器时,常常需要在这些容器之间共享文件。 Kubernetes 抽象出 Volume 对象来解决这两个问题。

卷的核心是包含一些数据的目录,Pod 中的容器可以访问该目录。 特定的卷类型可以决定这个目录如何形成的,并能决定它支持何种介质,以及目录中存放什么内容。

使用卷时, Pod 声明中需要提供卷的类型 (.spec.volumes 字段)和卷挂载的位置 (.spec.containers.volumeMounts 字段).

Persistent Volumes

PersistentVolume and PersistentVolumeClaim

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an administrator or dynamically provisioned using Storage Classes.

A PersistentVolumeClaim (PVC) is a request for storage by a user.

Storage Classes

StorageClass 为管理员提供了描述存储 “类” 的方法。 不同的类型可能会映射到不同的服务质量等级或备份策略,或是由集群管理员制定的任意策略。 Kubernetes 本身并不清楚各种类代表的什么。这个类的概念在其他存储系统中有时被称为 “配置文件”。

配置

ConfigMap

ConfigMap 是一种 API 对象,用来将非机密性的数据保存到键值对中。使用时, Pods 可以将其用作环境变量、命令行参数或者存储卷中的配置文件。

ConfigMap 将您的环境配置信息和 容器镜像 解耦,便于应用配置的修改。

Secret

Secret 是一种包含少量敏感信息例如密码、令牌或密钥的对象。 这样的信息可能会被放在 Pod 规约中或者镜像中。 使用 Secret 意味着你不需要在应用程序代码中包含机密数据。

由于创建 Secret 可以独立于使用它们的 Pod, 因此在创建、查看和编辑 Pod 的工作流程中暴露 Secret(及其数据)的风险较小。 Kubernetes 和在集群中运行的应用程序也可以对 Secret 采取额外的预防措施, 例如避免将机密数据写入非易失性存储。

Secret 类似于 ConfigMap 但专门用于保存机密数据。